Using Hydrophilic Ionic Liquid, [bmim]BF4 – Ethylene Glycol System as a Novel Media for the Rapid Synthesis of Copper Nanoparticles

نویسندگان

  • Manika Dewan
  • Ajeet Kumar
  • Amit Saxena
  • Arnab De
  • Subho Mozumdar
چکیده

In this work, we present a novel method for the synthesis of copper nanoparticles. We utilize the charge compensatory effect of ionic liquid [bmim]BF(4) in conjunction with ethylene glycol for providing electro-steric stabilization to copper nanoparticles prepared from copper sulphate using hydrazine hydrate as a reducing agent. The formed copper nanoparticles showed extended stability over a period of one year. Copper nanoparticles thus prepared were characterized by powder X-ray diffraction measurements (pXRD), transmission electron microscopy (TEM) and quasi elastic light scattering (QELS) techniques. Powder X-ray diffraction (pXRD) analysis revealed relevant Bragg's reflection for crystal structure of copper. Powder X-ray diffraction plots also revealed no oxidized material of copper nanoparticles. TEM showed nearly uniform distribution of the particles in methanol and confirmed by QELS. Typical applications of copper nanoparticles include uses in conductive films, lubrication and nanofluids. Currently efforts are under way in our laboratory for using these nanoparticles as catalysts for a variety of organic reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

[BMIm]BF4-LiCl as an effective catalytic system for the synthesis of dicoumarols

A homogeneous ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate doped with LiCl ([BMIm]BF4-LiCl) was found as catalyst solvents for the synthesis of dicoumarols by the condensation of 4-hydroxycoumarin and aldehyde at 80 ˚C. In this field, several types of aromatic aldehyde, containing electron-withdrawing groups as well as electron-donating groups, were rapidly changed to the correspo...

متن کامل

Biginelli Reaction Catalyzed by Copper Nanoparticles

We recently reported a novel synthesis of copper nanoparticles from copper sulphate utilizing the charge-compensatory effect of ionic liquid [bmim]BF(4) and ethylene glycol. The nanoparticles were characterized and found to be stable for one year. Here we hypothesize that the stabilized nanoparticles should be able to catalyze one-pot multicomponent organic reactions. We show that the nanoparti...

متن کامل

[BMIm]BF4-LiCl: An effective catalytic system for the synthesis of pyrano[3,2-c]chromene and pyrano[4,3-b]pyrone derivatives

An efficient and green method for the synthesis of pyrano[3,2-c]chromene or pyrano[4,3-b]pyrone derivatives is described by using a three-component condensation process of malononitrile, aldehyde, and 4-hydroxycoumarine or 4-hydroxypyrone in [BMIm]BF4-LiCl as an ionic liquid.

متن کامل

[BMIm]BF4-LiCl: An effective catalytic system for the synthesis of pyrano[3,2-c]chromene and pyrano[4,3-b]pyrone derivatives

An efficient and green method for the synthesis of pyrano[3,2-c]chromene or pyrano[4,3-b]pyrone derivatives is described by using a three-component condensation process of malononitrile, aldehyde, and 4-hydroxycoumarine or 4-hydroxypyrone in [BMIm]BF4-LiCl as an ionic liquid.

متن کامل

1-(1-Propylsulfonic)-3-methylimidazolium chloride Brønsted acidic ionic liquid catalyzed one-pot synthesis of 14-aryl-14H-dibenzo[a,j]xanthene derivatives under solvent-free conditions

A rapid, green and efficient method for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthene derivatives through a one-pot condensation of 2-naphthol with various aromatic aldehydes in the presences of several acidic ionic liquids including [PSMIM]Cl, [BMIM]HSO4, [BMIM]Cl, [BMIM]Br, and [BMIM]BF4 as organocatalysts and task-specific acidic ionic liquids (AILs) under solvent-free conditions is desc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012